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Thailand is experiencing a profound 

demographic transition characterized by rapid 

population aging. The national population of 

66,052,615 in 2023 is projected to include 20% of 

individuals aged 60 years or older by 2024, repre-

senting a dramatic increase from 6.8% in 1994. This 

demographic shift correlates with an escalating hip 

fracture incidence, particularly among patients 

Purpose: Hip fractures represent a critical orthopedic emergency in the geriatric population; diagnostic 

delays or inaccuracies may result in severe morbidity and mortality. Contemporary artificial 

intelligence technologies demonstrate potential for precise and rapid radiographic interpretation, 

particularly in resource-constrained healthcare environments with limited availability of specialists. We 

aimed to develop and validate the diagnostic performance of a YOLOv8-based deep learning model by 

junior orthopedic surgeons for the detection of hip fractures, categorizing images into three 

classifications: normal anatomy, femoral neck fractures, and intertrochanteric fractures. 
Methods: This retrospective study analyzed 2,035 anteroposterior hip radiographs from 942 patients. 

The YOLOv8 architecture was implemented using Google Colab with standardized hyperparameters. 

The dataset was stratified into training, validation, and testing sets. The performance evaluation 

utilized mean average precision (mAP@0.5), F1 score, precision, recall, sensitivity, specificity, and 

confusion matrix analysis. 
Results: The YOLOv8 model achieved an mAP@0.5 of 0.879 and a maximum F1 score of 0.86. The model 

demonstrated a maximum precision, confidence threshold, and maximum recall of 1.00, 0.961, and 0.91, 

respectively, at a confidence threshold of 0.000. The sensitivity values were 97.7%, 87.0%, and 95.9% for 

intertrochanteric fractures, femoral neck fractures, and normal anatomy, respectively. The specificity 

ranged from 97.1% to 99.0% across all classifications, indicating exceptional screening accuracy, 

particularly for normal anatomy and intertrochanteric fractures. 

Conclusions: The YOLOv8 model demonstrated clinical utility as a diagnostic screening tool for hip 

fractures, particularly in facilities with limited radiological expertise. However, femoral neck fracture 

classification requires further refinement through dataset augmentation and advanced training 

methodologies to enhance detection accuracy for this radiologically challenging entity. 
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with osteoporosis. The United States reports more 

than 250,000 hip fractures annually, with global 

projections indicating that the number of cases will 

increase substantially by 2050(1). 

Hip fracture diagnosis traditionally relies 

on a comprehensive clinical assessment that 

incurporates patient history, physical examination, 

and plain radiographic evaluation. However, 

diagnostic delays or misinterpretations may result 

in catastrophic complications, including increased 

mortality rates. Primary care facilities report a mis-

diagnosis rate of 14%(2), with physician experience 

in radiographic interpretation serving as a critical 

determinant(3). Previous investigations revealed 

that first-year junior doctors achieve a diagnostic 

sensitivity of only 73.1–76.9%, whereas specialist 

orthopedic surgeons attain a sensitivity of 96.2%(3). 

Recent advances in artificial intelligence 

(AI), particularly deep learning architectures and 

convolutional neural networks (CNNs), have 

generated considerable interest in automated 

radiographic diagnosis. International research has 

demonstrated that deep learning applications for 

wrist fracture detection achieve 95.2% accuracy(4), 

whereas CNNs for hip fracture identification yield 

a sensitivity of 92.7% and specificity of 95%(5). Cheng 

et al.( 6 )  developed a DenseNet-121 model for hip-

fracture detection, achieving 98% sensitivity and 

91% accuracy. 

You Only Look Once (YOLO) is a highly 

regarded computer vision architecture renowned 

for its superior speed and accuracy in object 

detection and image segmentation. Since the initial 

YOLO release in 2015, continuous development has 

culminated in YOLOv8, the current state-of-the-art 

version that demonstrates enhanced performance 

with low-resolution images and partially occluded 

objects. 

YOLOv8 employs a single-stage detector 

architecture optimized for real-time object detec-

tion. This model processes all images simultaneous-

ly to predict bounding boxes and class labels for 

objects of interest, in contrast to two-stage detectors 

that require separate region proposal and classifi-

cation phases. This integration provides YOLOv8 

with a superior processing velocity while main-

taining exceptional detection accuracy across 

diverse object categories. 

This study aimed to develop and evaluate 

an AI system utilizing the YOLOv8 architecture to 

assist in hip fracture diagnosis performed by junior 

orthopedic surgeons (first- to third-year residents), 

thereby reducing misdiagnosis rates in healthcare 

facilities with limited availability of radiological 

and orthopedic specialists. 

 

MATERIALS AND METHODS 

Study Design  

This retrospective study utilized a compre-

hensive database of anteroposterior hip and pelvic 

radiographs retrieved from the Picture Archiving 

and Communication System (PACS) at a tertiary 

care hospital from 2017 to 2023. 

 

Population and Sample 

1. Definitions and Classification Criteria: 

- Normal Hip:  

• Radiographic appearance of normal 

anatomical characteristics of the hip. 

• Intact cortical bone continuity. 

• Absence of fracture lines or trabecular 

pattern disruption. 

• Femoral neck-shaft angle within the nor-

mal range (120–135°). 

- Femoral Neck Fracture:  

• Fracture line within the femoral neck 

region. 

• Anatomical location between the femoral 

head and greater trochanter. 

• Trabecular pattern alterations. 

• Potential cortical disruption or step-off 

deformity. 

• Classification according to Garden crite-

ria (Types I–IV). 

- Intertrochanteric Fracture:  

• Fracture line localized between the 

greater and lesser trochanters. 

• Cortical bone alignment alterations. 

• Associated trabecular pattern fragmenta-

tion. 

• Possible displacement of bony fragments. 

• Classification according to AO/OTA 

criteria. 
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2. Inclusion Criteria: 

- Patients receiving medical care at the tertiary 

care hospital (2017–2023). 

- Age ≥30 years. 

- Radiographic images with adequate resolution 

for comprehensive anatomical evaluation. 

3. Exclusion Criteria: 

- Previous surgical intervention with metallic 

internal fixation devices. 

- Radiographs with indeterminate or ambiguous 

fracture patterns (including images obtained while 

the patient was on a stretcher or lifting device, 

where supporting equipment obscured anatomical 

structures and may alter fracture appearance). 

- Patients with concurrent diagnoses of osteopo-

rosis combined with other hip pathologies that 

significantly altered hip joint anatomy, including: 

• Septic arthritis of the hip. 

• Avascular necrosis of the femoral head. 

• Advanced hip osteoarthritis. 

4. Sample Size: 

- Total: 2,035 images from 942 patients. 

- All radiographs used for model development 

and testing were obtained from patients who had 

been definitively diagnosed and treated for hip 

fracture. Therefore, the ground truth labels were 

based on confirmed postoperative diagnoses 

documented in the patients’ medical records. 

- Distribution: femoral neck fractures (515 

images, 25.3%), intertrochanteric fractures (687 

images, 33.8%), and normal anatomy (833 images, 

40.9%). Demographics: 566 women (60.1%), 376 

men (39.9%); age range 40–99 years. 

- A formal sample size calculation was not 

applicable in this study because the objective was 

to train and validate a deep learning model rather 

than to test a statistical hypothesis. In computer 

vision research, model performance typically 

improves with increasing data volume and diver-

sity up to the point of convergence. Therefore, all 

eligible radiographs 2,035 images from 942 patients 

were included to maximize representativeness and 

minimize sampling bias. 

 

Data Collection Methods 

1. Image Data Acquisition: 

Anteroposterior view of the hip obtained from the 

tertiary care hospital. 

- Initial hip fracture radiographs were acquired 

in the non-traction position; patients were not 

placed under traction before imaging. 

- All radiographs used in this study were 

retrieved directly from the hospital’s PACS in their 

original diagnostic form, without post-processing 

of contrast or sharpness. The only modifications 

permitted before region-of-interest extraction were 

zoom-in or zoom-out adjustments to optimize 

visualization during screen capture. 

- Images captured the hip area, specifying side 

and type of hip (normal, femoral neck fracture, and 

intertrochanteric fracture), using the Windows 11 

Snipping Tool application. 

- Region of interest limited to hip joint anatomy. 

- All patient information was completely de-

identified before analysis. 

2. Image Data Management: 

- Dimensions: 213 × 187 to 672 × 612 pixels. 

- File sizes: 4–450 kB. 

 

AI Model Development 

1. Data Preparation and Annotation: 

- Roboflow annotation tools (Smart Polygon) 

were utilized for precise lesion delineation. 

- Annotation was supervised by an experienced 

orthopedic surgeon. 

- Data augmentation techniques were imple-

mented: 

• Auto-orientation correction. 

• Horizontal flip transformation. 

• Bounding box noise addition (0.1% pixel 

modification). 

• Histogram equalization enhancement. 

2. Dataset Partitioning: 

- Following augmentation, 4,878 images were 

systematically divided: 

- Training set: 4,268 images (87.5%). 

- Validation set: 407 images (8.3%). 

- Test set: 203 images (4.2%). 

3. Model Training: 

- Architecture: YOLOv8. 
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- Training Parameters: 

- Batch size: 16 

• The number of radiographic images 

processed simultaneously before each 

parameter update. A moderate batch size was 

selected to balance computational efficiency 

and stability of the learning process. 

- Epochs: 200 

• The model was exposed to the entire 

dataset for 200 complete training cycles. This 

number was selected to ensure sufficient 

learning of data patterns while monitoring 

validation loss to minimize overfitting. 

- Learning rate: 0.001 

• The step size used for updating model 

weights during optimization. The selected 

value is a commonly applied setting for CNN 

models, providing an appropriate balance 

between conver-gence speed and training 

stability. 

- Hardware Specifications: 

• Platform: Google Colab. 

• CPU: six cores, 12 logical processors. 

• GPU: NVIDIA A100-SXM4-40 GB. 
 

 
 

Fig. 1 Lesion localization process using Roboflow 

annotation tools, showing the precise delineation of 

fracture boundaries for model training purposes. 

 

Performance Evaluation Metrics 

1. Primary Evaluation Parameters 

- The model performance was assessed using 

standard machine learning metrics automatically 

generated by the YOLOv8 framework during the 

training and validation phases. 

- Precision (Positive Predictive Value): 

Calculated as Precision = TP/(TP + FP), where TP = 

true positives and FP = false positives. This metric 

represents the proportion of correctly identified 

fractures among all positive predictions. 

- Recall (Sensitivity/True Positive Rate): 

Calculated as Recall = TP/(TP + FN), where FN = 

false negatives. This metric measures the ability of 

the model to identify all actual fracture cases. 

- F1 score: Calculated as F1 = 2 × (Precision × 

Recall)/(Precision + Recall). This represents the 

harmonic mean of precision and recall, providing a 

balanced performance assessment. 

- Specificity (True Negative Rate): Calculated 

as Specificity = TN/(TN + FP), where TN = true 

negatives. This metric measures the model's ability 

to correctly identify normal cases. 

- Mean Average Precision (mAP@0.5): 

Calculated by averaging precision across different 

recall levels at the Intersection over Union 

threshold of 0.5, providing a comprehensive object 

detection performance assessment. 

- Confusion Matrix: A 3 × 3 matrix displaying 

the actual versus predicted classifications for the 

three categories (normal, femoral neck fracture, and 

intertrochanteric fracture), enabling a detailed 

analysis of classification errors and performance 

across all classes. 

2. Analysis of Results: 

- The primary focus of the analysis was a 

comparative evaluation of the model’s accuracy in 

classifying fracture types. 

- The rate of misdiagnosis (error rate) was also 

analyzed. 

 

Statistical Analysis  

  Descriptive statistics including frequency, 

mean, and standard deviation were computed. All 

proportion-based performance metrics (sensitivity, 

specificity, PPV, NPV, accuracy, and F1-score) were 

reported with 95% confidence intervals (95% CI) 

using the Wilson score method, which provides 

reliable estimation for binomial data with moderate 

sample size. 

  As this stage represented internal model 

validation, no physician comparisons were per-

formed. Descriptive statistics, including frequency 

distributions, percentages, means, and standard 

deviations, were calculated. The model perfor-



 
 
 

W. Kittipichai / Journal of Southeast Asian Orthopaedics Vol 50 No 1 (2026) 12-22 
 

  16 

mance assessment incorporated sensitivity, specifi-

city, and accuracy. 

 

RESULTS  

Demographic Characteristics 

The study cohort comprised 2,035 hip 

radiographs from 942 patients, with a mean age of 

72.4 ± 8.6 years (range: 40–99 years). The population 

consisted of 566 women (60.1%) and 376 men 

(39.9%). Image classification yielded 515 femoral 

neck fractures (25.3%), 687 intertrochanteric 

fractures (33.8%), and 833 normal studies (40.9%). 

 

Model Performance Analysis 

F1-Confidence Relation 

 
Fig. 2 F1-confidence curve, illustrating the relation 

between the balanced accuracy metric and 

confidence levels. 

 

Figure 2 presents the F1-confidence curve, 

illustrating the relation between: 

- Model confidence in predicting whether 

a radiograph shows a fracture, and 

- F1-score, a balanced performance metric 

that incorporates both sensitivity (ability to 

correctly identify fractures) and precision (ability to 

avoid false positives). 

The F1-confidence curve demonstrated 

optimal performance with a maximum aggregate 

F1 score of 0.86 at a confidence threshold of 0.362. 

Across categories, normal anatomy achieved the 

highest F1 scores, followed by intertrochanteric 

fractures, whereas femoral neck fractures 

demonstrated the lowest values. 

Precision Analysis 

 
Fig. 3 Precision-confidence curve, demonstrating 

precision performance across varying confidence 

thresholds. 

 

Figure 3 displays the precision-confidence 

curve, which is used to illustrate how the 

performance of the model (precision mean positive 

predictive value) changes as the model’s confidence 

threshold is adjusted upward or downward. 

Maximum overall precision of 1.00 was achieved at 

a confidence score of 0.961, indicating exceptional 

accuracy at elevated confidence levels. Normal 

anatomy and intertrochanteric fractures main-

tained consistently high precision, whereas femoral 

neck fractures showed comparatively lower 

precision. 

 

Precision-Recall Performance 

 
Fig. 4 Precision-Recall Curve, depicting the trade-

off between precision and recall. 

X-axis = Recall (Sensitivity): Represents 

the proportion of true positive cases correctly identi-
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fied by the model. High recall indicates fewer 

missed cases. 

Y-axis = Precision (Positive Predictive 

Value): Represents the proportion of predicted 

positive cases that were true positives. High 

precision indicates fewer false positives. 

As the confidence threshold was adjusted 

from low to high, pairs of values (recall, precision) 

were generated, forming a curve. 

The area under the curve (average 

precision) was calculated for each class, and the 

mean value across all classes was reported as mAP. 

Figure 4 shows that the precision–recall curve and 

mAP@0.5 reached 0.879. Class-specific precision 

values were 0.949 for normal anatomy, 0.925 for 

intertrochanteric fractures, and 0.763 for femoral 

neck fractures. 

 

Recall Analysis 

 
Fig. 5 Recall-confidence curve, which represents 

recall performance at different confidence levels. 

X-axis = Confidence (model confidence 

level): a value ranging from zero to one indicates 

how certain the model is before making a final 

decision. 

Y-axis = Recall (Sensitivity): the propor-

tion of true positive cases that the model correctly 

identified. High recall indicates fewer missed cases. 

As the confidence threshold increased from 

low to high, the model became more stringent in its 

predictions, causing the recall to gradually decline 

and then drop sharply near the higher end of the 

scale (approximately 0.9–1.0). Figure 5 shows that 

overall recall reached 0.91 at a confidence score of 

0.000, demonstrating comprehensive lesion detec-

tion capability. Femoral neck fractures exhibited 

the lowest recall performance among all classifi-

cations. 

 

Classification Accuracy Matrix 
 

 
 

Fig. 6 Confusion matrix, providing a comprehen-

sive view of the classification performance across 

all categories. 

 

As shown in Figure 6, the confusion matrix 

analysis revealed the highest classification accuracy 

for normal anatomy, followed by intertrochanteric 

fractures. The highest misclassification rate occur-

red within the femoral neck fracture category. 

Sensitivity and Specificity Analysis 

Detailed analysis of diagnostic performan-

ce by fracture type revealed, as shown in Table 1: 

Sensitivity (True Positive Rate): 

- Intertrochanteric fractures: 97.7% 

- Normal anatomy: 95.9% 

- Femoral neck fractures: 87.0% 

Specificity (True Negative Rate): 

- All classifications: 97.1–99.0% 

These results indicate exceptional screen-

ing capability, particularly for normal anatomy and 

intertrochanteric fracture detection. 
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DISCUSSION 
 

Model Performance Comparison 

This study employed the YOLOv8 architec-

ture for hip fracture diagnosis using radiographic 

images obtained from the tertiary care hospital 

PACS. The dataset of 2,035 images from 942 

patients exceeded the sample sizes reported in 

previous studies, including those of Beyaz et al.(7) 

(724 images) and Lee et al.(8) (459 images), sugges-

ting adequate statistical power for model training. 

The tripartite classification system (normal, 

femoral neck, and intertrochanteric fractures) 

aligns with established clinical practice and 

encompasses the most frequently encountered and 

diagnostically challenging hip fracture patterns. 

The achieved sensitivity and specificity values 

demonstrated high performance, approximating or 

exceeding those of studies utilizing larger training 

datasets. 

The overall model performance showed an 

average sensitivity and specificity exceeding 90%, 

with an F1 score of 0.86, which compared favorably 

with the existing literature. Analyses by fracture 

type revealed a lesion detection capability 

exceeding 85% across all categories. Intertrochan-

teric fractures achieved a sensitivity of 97%, 

whereas femoral neck fractures demonstrated a 

sensitivity of 87%. Specificity consistently exceeded 

97% for all classifications, indicating minimal false-

positive rates and excellent screening utility. 

 

Table 1 Sensitivity and specificity of the model. 
 

Research Study Model Total Train Images Sensitivity 

(%) 

Specificity 

(%) 

F1-score 

This study YOLOv8 2,035 91 95 0.86 

Beyaz et al. 2023 Xception + EfficientNet-B7 + NFNet-F3 724 95.97 91.7 0.917 

Krogue et al. 2020 DenseNet (w/ detection module) 3,034 92.7 95 0.9 

Lee et al. 2020 Meta-learned DNN 459 87 87 0.867 

Yildiz Potter et al. 2024 VarifocalNet FPN 823 95 94 0.98 

 
 

Table 2 Sensitivity and specificity metrics stratified by disease group. 
 

Class TP FN FP TN Sensitivity 

(%) 

Specificity 

(%) 

Precision (PPV) 

(%) 

NPV 

(%) 

Accuracy 

(%) 

F1-score 

Intertrochanteric 128 3 6 250 97.7 97.6 95.5 98.8 97.7 0.966 

Neck 87 13 3 284 87 99 96.7 95.6 95.6 0.915 

NormalHip 140 6 7 234 95.9 97.1 95.2 97.5 96.5 0.956 

Overall 355 22 16 768 94.2 98 95.7 97.2 96.5 0.949 

TP, true positive; FN, false negative; FP, false positive; TN, true negative; PPV, positive predictive value; NPV, negative predictive value. 

 

AI Architecture Comparison 

CNN Models 

The traditional CNN architectures (Dense-

Net, ResNet, VGG16, and Inception-V3) utilized by 

Krogue(5), Cheng(6), and Lee(8) offer advantages for 

largescale image training and architectural 

simplicity. However, these models lack visual 

lesion localization capabilities, which limits the 

clinical verification of diagnostic decisions. 

Ensemble Model Approaches 

Beyaz et al.(7) investigated ensemble metho-

dologies incorporating the Xception, EfficientNet, 

and NFNet architectures using majority-voting 

techniques. While individual models demonstrated 

rapid performance and reduced computational 

requirements, ensemble implementation necessitat-

ed multi-model analysis, increasing developmental 

complexity and computational resource demands. 
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Object Detection Models 

Object detection architectures (YOLOv5, 

YOLOv8, Feature Pyramid Networks) provide 

direct lesion identification and localization capabi-

lities while managing complex compositional 

elements. Both the study by Potter et al.(9) and 

current investigation demonstrated robust FPN 

and YOLO performance, with sensitivity and 

specificity exceeding 90%. The primary limitation 

involves time-intensive, resource-demanding, and 

precise lesion annotation requiring expert 

supervision. 

 

Clinical Advantages of YOLOv8 

In contrast to CNN models that determine 

fracture presence or absence without lesion 

localization, the YOLOv8 architecture offers sub-

stantial clinical advantages through simultaneous 

object detection and classification capabilities. This 

functionality renders YOLOv8 exceptionally 

suitable for automated diagnostic assistance 

systems, particularly in resource-constrained 

environments and for supporting junior medical 

trainees. 

Additionally, YOLOv8 demonstrated 

superior performance with suboptimal image 

quality or partially obscured lesions, reflecting real-

world clinical scenarios involving variable 

projection angles, image sharpness variations, and 

metallic implant interference. 

 

Potential Causes of AI Misclassification 

In this study, heatmap-based visualization, 

such as Grad-CAM, was not incorporated, and 

therefore the exact sites where the AI failed to 

detect fractures could not be localized. 

Nevertheless, previous studies have provided 

insights into common sources of error. Cheng et 

al.(6) demonstrated that AI often misinterprets 

subtle trabecular changes in heatmaps, while 

Krogue et al.(5) reported particularly low sensitivity 

for nondisplaced femoral neck fractures, consistent 

with our results, in which femoral neck fractures 

had lower sensitivity than those of intertrochanteric 

fractures. Similarly, Pinto et al.(3) highlighted that 

subtle or occult fractures on plain radiographs are 

challenging even for radiologists and thus remain a 

limitation for AI. Beyaz et al.(7) showed that using 

ensemble CNN models and multicenter data 

improved generalizability and reduced false 

positives, supporting the notion that broader and 

more diverse datasets may mitigate some of the 

failure modes observed in our model. While our 

study excluded postoperative images with metal 

implants to avoid confounding artifacts, prior 

studies (Shi et al.(2)) emphasized that variability in 

radiographic exposure and image quality remains a 

major source of diagnostic error. Collectively, these 

comparisons suggest that misclassification in our 

model likely arose from subtle nondisplaced 

fractures, limited dataset size for certain subgroups, 

and the inherent limitations of plain radiography. 

 

Annotation Bias 

Previous studies have highlighted that data 

labeling can be prone to errors, particularly in 

subtle or borderline fractures that may be 

interpreted as “normal.” Pinto et al.(3) reported that 

missed diagnoses on plain radiographs in 

emergency settings are relatively common and can 

directly translate into annotation bias when 

training AI models. Similarly, Lindsey et al.(4) 

demonstrated that although deep neural networks 

improve fracture detection by clinicians, subtle 

fractures remain a significant challenge. To 

minimize this issue, all images in our study were 

reviewed and grouped by the treating orthopedic 

surgeon before training. 

 

Overfitting and Underfitting 

The risks of overfitting and underfitting 

have been well documented in prior studies. 

Krogue et al.(5) noted that models trained on single-

center datasets may overfit specific image 

characteristics and perform poorly in external 

settings. Cheng et al.(6) emphasized the importance 
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of dataset size and diversity and noted that 

insufficient variability can lead to underfitting and 

reduced generalizability. By contrast, Beyaz et al.(7) 

demonstrated that training on multicenter datasets 

with ensemble models mitigated overfitting and 

improved diagnostic robustness. Our study 

attempted to address these limitations through 

careful annotation review, but the relatively small 

sample size of femoral neck fractures may have 

contributed to underrepresentation and low 

sensitivity in this subgroup. 

 

Potential Implementation Barriers and Solutions 

One of the major barriers to applying AI 

models in real-world clinical practice is concern 

regarding diagnostic accuracy and reliability. For 

this reason, we consider the proposed model to be 

the most valuable decision-support tool to assist 

clinicians, particularly junior doctors, in confirming 

or validating their initial interpretation rather than 

fully replacing human judgment. This approach 

can help improve confidence in diagnosis while 

minimizing the risk of overreliance on AI. 

Regarding cost and feasibility, because the 

YOLOv8 model has already been developed and 

trained, it can be deployed on the intranets of 

healthcare facilities without requiring expensive 

infrastructure. Moreover, the model can also be 

implemented through free hosting platforms, such 

as Hugging Face, which allows the tool to be 

accessed by multiple centers at no additional cost. 

This flexibility supports practical adoption, 

particularly in resource-limited hospitals. 

 

Limitations Regarding the Single-Center Design 

and Exclusion Criteria 

A key limitation of this study is that all data 

were collected from a single hospital, which may 

reduce the generalizability of the results to other 

populations or imaging environments. However, 

the choice of YOLOv8 as the core architecture 

provides advantages because it is designed to 

handle images of varying quality, including lower-

resolution or partially obscured images, making it 

more adaptable to real-world radiographs from 

different institutions. Future research should 

expand to include multicenter datasets to validate 

the external applicability of the model. 

Another important limitation of this study 

is the exclusion of patients who had osteoporosis 

combined with other hip pathologies, such as septic 

arthritis of the hip, avascular necrosis of the femoral 

head, and advanced hip osteoarthritis. These 

conditions were excluded because they often cause 

significant anatomical distortion or cortical bone 

irregularity, making it difficult for the model to 

accurately learn and classify normal versus 

fractured anatomy during the initial training phase. 

Nevertheless, the ability to recognize fractures in 

atypical or deformed hip anatomy represents an 

important opportunity for future model 

improvement. 

 

Clinical Implementation Potential 

Based on the present findings, the YOLOv8 

model demonstrates strong potential for real-world 

clinical integration. With sensitivity, specificity, 

and F1 scores consistently above 90%, the model 

provided sufficient diagnostic reliability for 

application as a supportive screening tool. Its real-

time processing speed allows for rapid decision-

making in emergency departments, which is crucial 

for minimizing delays in hip fracture management. 

Importantly, the model can serve as a decision-

support mechanism for junior doctors in settings 

with limited radiological coverage, thereby 

enhancing diagnostic safety. Furthermore, because 

the system can be deployed on hospital intranets or 

secure web platforms without extensive 

infrastructure investment, it is highly scalable and 

accessible, even in resource-limited hospitals. This 

scalability extends to telemedicine networks, where 

peripheral clinics may benefit from AI-assisted 

preliminary interpretations before confirmation by 

orthopedic specialists. These strengths suggest that 

YOLOv8 is not only technically robust but also 
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clinically feasible and cost-effective, making it a 

promising candidate for widespread implemen-

tation in diverse healthcare settings. 

 

Recommendations for Future Development 

Based on the sensitivity and specificity 

analyses, opportunities for improvement include 

femoral neck fracture dataset augmentation and 

advanced data augmentation techniques during 

model training. Potential enhancements include 

controlled brightness and sharpness adjustments, 

minor rotational modifications, and controlled 

noise introduction to facilitate diverse image 

learning and reduce overfitting, which are 

particularly relevant for morphologically complex 

femoral neck fractures. 

 

CONCLUSIONS 

The YOLOv8-based model demonstrated 

significant clinical potential, with performance 

metrics closely aligned with established research 

findings from Krogue(5), Cheng(6), and Lee(8), while 

approaching the results reported by Beyaz et al.(7). 

The hip fracture diagnostic efficiency of the model 

consistently exceeded 90%, indicating its robust 

capability for real-world clinical applications. 

Importantly, although the model showed 

high overall sensitivity and specificity, certain 

limitations were noted in failure cases. For 

example, subtle or nondisplaced fractures, 

borderline cases between normal and fractured, 

and images with lower quality or anatomical 

variations occasionally led to misclassifications. 

These findings are consistent with challenges 

reported in previous studies(5–8). 

Such failure cases highlight the necessity 

for larger and more diverse training datasets, 

improved annotation consistency, and possible 

integration with multiview or multimodality 

imaging to enhance detection performance. 

Additionally, interpretability tools, such as heat 

maps or attention maps, could be applied in future 

work to precisely identify where AI may misread 

fracture signals. 

In summary, this study established 

YOLOv8 as a highly appropriate architecture for 

hip fracture diagnostic assistance from radiograp-

hic images, supported by superior performance 

metrics, processing velocity, localization capabili-

ties, and alignment with practical healthcare delive-

ry requirements. Nevertheless, continued refine-

ment is essential to minimize missed diagnoses and 

strengthen confidence in its clinical adoption.  
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APPENDIX 

Source code for training the YOLOv8 

model: 

https://drive.google.com/file/d/1sb4gwajjgMHLF1

kEf66YXjjSuP7W3eWK/view?usp=sharing 
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