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Purpose: Hip fractures represent a critical orthopedic emergency in the geriatric population; diagnostic
delays or inaccuracies may result in severe morbidity and mortality. Contemporary artificial
intelligence technologies demonstrate potential for precise and rapid radiographic interpretation,
particularly in resource-constrained healthcare environments with limited availability of specialists. We
aimed to develop and validate the diagnostic performance of a YOLOvS8-based deep learning model by
junior orthopedic surgeons for the detection of hip fractures, categorizing images into three
classifications: normal anatomy, femoral neck fractures, and intertrochanteric fractures.

Methods: This retrospective study analyzed 2,035 anteroposterior hip radiographs from 942 patients.
The YOLOVS architecture was implemented using Google Colab with standardized hyperparameters.
The dataset was stratified into training, validation, and testing sets. The performance evaluation
utilized mean average precision (mAP@0.5), F1 score, precision, recall, sensitivity, specificity, and
confusion matrix analysis.

Results: The YOLOv8 model achieved an mAP@0.5 of 0.879 and a maximum F1 score of 0.86. The model
demonstrated a maximum precision, confidence threshold, and maximum recall of 1.00, 0.961, and 0.91,
respectively, at a confidence threshold of 0.000. The sensitivity values were 97.7%, 87.0%, and 95.9% for
intertrochanteric fractures, femoral neck fractures, and normal anatomy, respectively. The specificity
ranged from 97.1% to 99.0% across all classifications, indicating exceptional screening accuracy,
particularly for normal anatomy and intertrochanteric fractures.

Conclusions: The YOLOv8 model demonstrated clinical utility as a diagnostic screening tool for hip
fractures, particularly in facilities with limited radiological expertise. However, femoral neck fracture
classification requires further refinement through dataset augmentation and advanced training
methodologies to enhance detection accuracy for this radiologically challenging entity.

Keywords: Hip fracture, YOLOVS, artificial intelligence, radiography, junior orthopedic surgeons,
sensitivity, specificity
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with osteoporosis. The United States reports more
than 250,000 hip fractures annually, with global
projections indicating that the number of cases will
increase substantially by 2050(.

Hip fracture diagnosis traditionally relies
on a comprehensive clinical assessment that
incurporates patient history, physical examination,
and plain radiographic evaluation. However,
diagnostic delays or misinterpretations may result
in catastrophic complications, including increased
mortality rates. Primary care facilities report a mis-
diagnosis rate of 14%®@, with physician experience
in radiographic interpretation serving as a critical
determinant®. Previous investigations revealed
that first-year junior doctors achieve a diagnostic
sensitivity of only 73.1-76.9%, whereas specialist
orthopedic surgeons attain a sensitivity of 96.2%®.

Recent advances in artificial intelligence
(Al), particularly deep learning architectures and
convolutional neural networks (CNNs), have
generated considerable interest in automated
radiographic diagnosis. International research has
demonstrated that deep learning applications for
wrist fracture detection achieve 95.2% accuracy®,
whereas CNNSs for hip fracture identification yield
a sensitivity of 92.7% and specificity of 95%". Cheng
et al.” developed a DenseNet-121 model for hip-

fracture detection, achieving 98% sensitivity and
91% accuracy.

You Only Look Once (YOLO) is a highly
regarded computer vision architecture renowned
for its superior speed and accuracy in object
detection and image segmentation. Since the initial
YOLO release in 2015, continuous development has
culminated in YOLOVS, the current state-of-the-art
version that demonstrates enhanced performance
with low-resolution images and partially occluded
objects.

YOLOv8 employs a single-stage detector
architecture optimized for real-time object detec-
tion. This model processes all images simultaneous-
ly to predict bounding boxes and class labels for
objects of interest, in contrast to two-stage detectors
that require separate region proposal and classifi-
cation phases. This integration provides YOLOv8
with a superior processing velocity while main-

taining exceptional detection accuracy across
diverse object categories.

This study aimed to develop and evaluate
an Al system utilizing the YOLOVS architecture to
assist in hip fracture diagnosis performed by junior
orthopedic surgeons (first- to third-year residents),
thereby reducing misdiagnosis rates in healthcare
facilities with limited availability of radiological
and orthopedic specialists.

MATERIALS AND METHODS
Study Design

This retrospective study utilized a compre-
hensive database of anteroposterior hip and pelvic
radiographs retrieved from the Picture Archiving
and Communication System (PACS) at a tertiary
care hospital from 2017 to 2023.

Population and Sample
1. Definitions and Classification Criteria:
- Normal Hip:
¢ Radiographic appearance of normal
anatomical characteristics of the hip.
o Intact cortical bone continuity.
e Absence of fracture lines or trabecular
pattern disruption.
¢ Femoral neck-shaft angle within the nor-
mal range (120-135°).
- Femoral Neck Fracture:
e Fracture line within the femoral neck
region.
¢ Anatomical location between the femoral
head and greater trochanter.
¢ Trabecular pattern alterations.
e Potential cortical disruption or step-off
deformity.
o Classification according to Garden crite-
ria (Types I-1V).
- Intertrochanteric Fracture:
e Fracture line localized between the
greater and lesser trochanters.
e Cortical bone alignment alterations.
o Associated trabecular pattern fragmenta-
tion.
e Possible displacement of bony fragments.
o Classification according to AO/OTA
criteria.
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2. Inclusion Criteria:

- Patients receiving medical care at the tertiary
care hospital (2017-2023).

- Age >30 years.

- Radiographic images with adequate resolution
for comprehensive anatomical evaluation.

3. Exclusion Criteria:
- Previous surgical intervention with metallic
internal fixation devices.
- Radiographs with indeterminate or ambiguous
fracture patterns (including images obtained while
the patient was on a stretcher or lifting device,
where supporting equipment obscured anatomical
structures and may alter fracture appearance).
- Patients with concurrent diagnoses of osteopo-
rosis combined with other hip pathologies that
significantly altered hip joint anatomy, including:
o Septic arthritis of the hip.
¢ Avascular necrosis of the femoral head.
¢ Advanced hip osteoarthritis.

4. Sample Size:

- Total: 2,035 images from 942 patients.

- All radiographs used for model development
and testing were obtained from patients who had
been definitively diagnosed and treated for hip
fracture. Therefore, the ground truth labels were
based on confirmed postoperative diagnoses
documented in the patients” medical records.

- Distribution: femoral neck fractures (515
images, 25.3%), intertrochanteric fractures (687
images, 33.8%), and normal anatomy (833 images,
40.9%). Demographics: 566 women (60.1%), 376
men (39.9%); age range 40-99 years.

- A formal sample size calculation was not
applicable in this study because the objective was
to train and validate a deep learning model rather
than to test a statistical hypothesis. In computer
vision research, model performance typically
improves with increasing data volume and diver-
sity up to the point of convergence. Therefore, all
eligible radiographs 2,035 images from 942 patients
were included to maximize representativeness and
minimize sampling bias.

Data Collection Methods

1. Image Data Acquisition:

Anteroposterior view of the hip obtained from the
tertiary care hospital.

- Initial hip fracture radiographs were acquired
in the non-traction position; patients were not
placed under traction before imaging.

- All radiographs used in this study were
retrieved directly from the hospital’s PACS in their
original diagnostic form, without post-processing
of contrast or sharpness. The only modifications
permitted before region-of-interest extraction were
zoom-in or zoom-out adjustments to optimize
visualization during screen capture.

- Images captured the hip area, specifying side
and type of hip (normal, femoral neck fracture, and
intertrochanteric fracture), using the Windows 11
Snipping Tool application.

- Region of interest limited to hip joint anatomy.

- All patient information was completely de-
identified before analysis.

2. Image Data Management:
- Dimensions: 213 x 187 to 672 x 612 pixels.
- File sizes: 4-450 kB.

Al Model Development
1. Data Preparation and Annotation:
- Roboflow annotation tools (Smart Polygon)
were utilized for precise lesion delineation.
- Annotation was supervised by an experienced
orthopedic surgeon.
- Data augmentation techniques were imple-
mented:
¢ Auto-orientation correction.
e Horizontal flip transformation.
¢ Bounding box noise addition (0.1% pixel
modification).
¢ Histogram equalization enhancement.
2. Dataset Partitioning:
- Following augmentation, 4,878 images were
systematically divided:
- Training set: 4,268 images (87.5%).
- Validation set: 407 images (8.3%).
- Test set: 203 images (4.2%).
3. Model Training:
- Architecture: YOLOVS.
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- Training Parameters:
- Batch size: 16

e The number
processed
parameter update. A moderate batch size was
selected to balance computational efficiency
and stability of the learning process.
- Epochs: 200

e The model was exposed to the entire
dataset for 200 complete training cycles. This
number was selected to ensure sufficient

of radiographic images

simultaneously = before each

learning of data patterns while monitoring
validation loss to minimize overfitting.
- Learning rate: 0.001

e The step size used for updating model
weights during optimization. The selected
value is a commonly applied setting for CNN
models, providing an appropriate balance
between conver-gence speed and training
stability.

- Hardware Specifications:

e Platform: Google Colab.

¢ CPU: six cores, 12 logical processors.

o GPU: NVIDIA A100-SXM4-40 GB.

Annotation
Editor

iox

Intertrochanteric fracture

Save (Enter)

2 Intertrochanteric fracture

Delete

Fig. 1 Lesion localization process using Roboflow
annotation tools, showing the precise delineation of
fracture boundaries for model training purposes.

Performance Evaluation Metrics
1. Primary Evaluation Parameters

- The model performance was assessed using
standard machine learning metrics automatically
generated by the YOLOvVS framework during the
training and validation phases.

- Precision (Positive Predictive Value):
Calculated as Precision = TP/(TP + FP), where TP =

true positives and FP = false positives. This metric
represents the proportion of correctly identified
fractures among all positive predictions.

- Recall (Sensitivity/True Positive Rate):
Calculated as Recall = TP/(TP + FN), where FN =
false negatives. This metric measures the ability of
the model to identify all actual fracture cases.

- F1 score: Calculated as F1 = 2 x (Precision x
Recall)/(Precision + Recall). This represents the
harmonic mean of precision and recall, providing a
balanced performance assessment.

- Specificity (True Negative Rate): Calculated
as Specificity = TN/(TN + FP), where TN = true
negatives. This metric measures the model's ability
to correctly identify normal cases.

- Mean Precision (mAP@0.5):
Calculated by averaging precision across different

Average

recall levels at the Intersection over Union
threshold of 0.5, providing a comprehensive object
detection performance assessment.

- Confusion Matrix: A 3 x 3 matrix displaying
the actual versus predicted classifications for the
three categories (normal, femoral neck fracture, and
intertrochanteric fracture), enabling a detailed
analysis of classification errors and performance
across all classes.

2. Analysis of Results:

- The primary focus of the analysis was a
comparative evaluation of the model’s accuracy in
classifying fracture types.

- The rate of misdiagnosis (error rate) was also
analyzed.

Statistical Analysis

Descriptive statistics including frequency,
mean, and standard deviation were computed. All
proportion-based performance metrics (sensitivity,
specificity, PPV, NPV, accuracy, and F1-score) were
reported with 95% confidence intervals (95% CI)
using the Wilson score method, which provides
reliable estimation for binomial data with moderate
sample size.

As this stage represented internal model
validation, no physician comparisons were per-
formed. Descriptive statistics, including frequency
distributions, percentages, means, and standard
deviations, were calculated. The model perfor-
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mance assessment incorporated sensitivity, specifi-
city, and accuracy.

RESULTS
Demographic Characteristics

The study cohort comprised 2,035 hip
radiographs from 942 patients, with a mean age of
72.4+ 8.6 years (range: 40-99 years). The population
consisted of 566 women (60.1%) and 376 men
(39.9%). Image classification yielded 515 femoral
neck fractures (25.3%), 687 intertrochanteric
fractures (33.8%), and 833 normal studies (40.9%).

Model Performance Analysis
F1-Confidence Relation

1o F1-Confidence Curve

— intertrochanteric fracture
- neck-fracture
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Fig. 2 Fl-confidence curve, illustrating the relation
between the balanced accuracy metric and

confidence levels.

Figure 2 presents the F1-confidence curve,
illustrating the relation between:

- Model confidence in predicting whether
a radiograph shows a fracture, and

- Fl-score, a balanced performance metric
that incorporates both sensitivity (ability to
correctly identify fractures) and precision (ability to
avoid false positives).

The Fl-confidence curve demonstrated
optimal performance with a maximum aggregate
F1 score of 0.86 at a confidence threshold of 0.362.
Across categories, normal anatomy achieved the
highest F1 scores, followed by intertrochanteric
femoral neck fractures

fractures, whereas

demonstrated the lowest values.

Precision Analysis

Precision-Confidence Curve
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Fig. 3 Precision-confidence curve, demonstrating
precision performance across varying confidence
thresholds.

Figure 3 displays the precision-confidence
which

performance of the model (precision mean positive

curve, is used to illustrate how the
predictive value) changes as the model’s confidence
threshold is adjusted upward or downward.
Maximum overall precision of 1.00 was achieved at
a confidence score of 0.961, indicating exceptional
accuracy at elevated confidence levels. Normal
anatomy and intertrochanteric fractures main-
tained consistently high precision, whereas femoral
showed lower

neck fractures comparatively

precision.

Precision-Recall Performance

Precision-Recall Curve

1.0
. intertrochanteric fracture 0.925
neck-fracture 0.763

\—L —— normal 0.949

. j] — all classes 0.879 MAP@0.5

06 ‘

Precision

0.4
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0.0 02 0.4 0.6 0.8 10
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Fig. 4 Precision-Recall Curve, depicting the trade-
off between precision and recall.

X-axis = Recall (Sensitivity): Represents
the proportion of true positive cases correctly identi-
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fied by the model. High recall indicates fewer
missed cases.

Y-axis = Precision (Positive Predictive
Value): Represents the proportion of predicted
positive cases that were frue positives. High
precision indicates fewer false positives.

As the confidence threshold was adjusted
from low to high, pairs of values (recall, precision)
were generated, forming a curve.

The area under the curve (average
precision) was calculated for each class, and the
mean value across all classes was reported as mAP.
Figure 4 shows that the precision-recall curve and
mAP@0.5 reached 0.879. Class-specific precision
values were 0.949 for normal anatomy, 0.925 for
intertrochanteric fractures, and 0.763 for femoral
neck fractures.

Recall Analysis

1o Recall-Confidence Curve
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Fig. 5 Recall-confidence curve, which represents
recall performance at different confidence levels.

X-axis = Confidence (model confidence
level): a value ranging from zero to one indicates
how certain the model is before making a final
decision.

Y-axis = Recall (Sensitivity): the propor-
tion of true positive cases that the model correctly
identified. High recall indicates fewer missed cases.

As the confidence threshold increased from
low to high, the model became more stringent in its
predictions, causing the recall to gradually decline
and then drop sharply near the higher end of the
scale (approximately 0.9-1.0). Figure 5 shows that

overall recall reached 0.91 at a confidence score of
0.000, demonstrating comprehensive lesion detec-
tion capability. Femoral neck fractures exhibited
the lowest recall performance among all classifi-
cations.

Classification Accuracy Matrix

Confusion Matrix

140

120

intertrochanteric

100

Predicted
nepk

normal

intertrochanteric neck normal

True

Fig. 6 Confusion matrix, providing a comprehen-
sive view of the classification performance across
all categories.

As shown in Figure 6, the confusion matrix
analysis revealed the highest classification accuracy
for normal anatomy, followed by intertrochanteric
fractures. The highest misclassification rate occur-
red within the femoral neck fracture category.

Sensitivity and Specificity Analysis

Detailed analysis of diagnostic performan-
ce by fracture type revealed, as shown in Table 1:

Sensitivity (True Positive Rate):

- Intertrochanteric fractures: 97.7%

- Normal anatomy: 95.9%

- Femoral neck fractures: 87.0%

Specificity (True Negative Rate):

- All classifications: 97.1-99.0%

These results indicate exceptional screen-
ing capability, particularly for normal anatomy and
intertrochanteric fracture detection.
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DISCUSSION
Model Performance Comparison

This study employed the YOLOvVS architec-
ture for hip fracture diagnosis using radiographic
images obtained from the tertiary care hospital
PACS. The dataset of 2,035 images from 942
patients exceeded the sample sizes reported in
previous studies, including those of Beyaz et al.”)
(724 images) and Lee et al.® (459 images), sugges-
ting adequate statistical power for model training.

The tripartite classification system (normal,
femoral neck, and intertrochanteric fractures)
aligns with established clinical practice and
encompasses the most frequently encountered and

diagnostically challenging hip fracture patterns.

Table 1 Sensitivity and specificity of the model.

The achieved sensitivity and specificity values
demonstrated high performance, approximating or
exceeding those of studies utilizing larger training
datasets.

The overall model performance showed an
average sensitivity and specificity exceeding 90%,
with an F1 score of 0.86, which compared favorably
with the existing literature. Analyses by fracture
type
exceeding 85% across all categories. Intertrochan-

revealed a lesion detection capability
teric fractures achieved a sensitivity of 97%,
whereas femoral neck fractures demonstrated a
sensitivity of 87%. Specificity consistently exceeded
97% for all classifications, indicating minimal false-

positive rates and excellent screening utility.

Research Study Model Total Train Images  Sensitivity = Specificity ~Fl-score
(%) (%)
This study YOLOvVS8 2,035 91 95 0.86
Beyaz et al. 2023 Xception + EfficientNet-B7 + NFNet-F3 724 95.97 91.7 0.917
Krogue et al. 2020 DenseNet (w/ detection module) 3,034 92.7 95 0.9
Lee et al. 2020 Meta-learned DNN 459 87 87 0.867
Yildiz Potter et al. 2024 VarifocalNet FPN 823 95 94 0.98
Table 2 Sensitivity and specificity metrics stratified by disease group.
Class TP FN FP TN Sensitivity Specificity Precision (PPV) NPV Accuracy  Fl-score
(%) (%) (%) (%) (%)
Intertrochanteric 128 3 6 250 97.7 97.6 95.5 98.8 97.7 0.966
Neck 8 13 3 284 87 99 96.7 95.6 95.6 0.915
NormalHip 140 6 7 234 95.9 97.1 95.2 97.5 96.5 0.956
Overall 355 22 16 768 94.2 98 95.7 97.2 96.5 0.949

TP, true positive; FN, false negative; FP, false positive; TN, true negative; PPV, positive predictive value; NPV, negative predictive value.

Al Architecture Comparison
CNN Models

The traditional CNN architectures (Dense-
Net, ResNet, VGG16, and Inception-V3) utilized by
Krogue®, Cheng®), and Lee® offer advantages for
largescale image training and architectural
simplicity. However, these models lack visual
lesion localization capabilities, which limits the

clinical verification of diagnostic decisions.

Ensemble Model Approaches

Beyaz et al.” investigated ensemble metho-
dologies incorporating the Xception, EfficientNet,
and NFNet architectures using majority-voting
techniques. While individual models demonstrated
rapid performance and reduced computational
requirements, ensemble implementation necessitat-
ed multi-model analysis, increasing developmental
complexity and computational resource demands.
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Object Detection Models

Object detection architectures (YOLOVS,
YOLOVS, Feature Pyramid Networks) provide
direct lesion identification and localization capabi-
lities while managing complex compositional
elements. Both the study by Potter et al.®) and
current investigation demonstrated robust FPN
and YOLO performance, with sensitivity and
specificity exceeding 90%. The primary limitation
involves time-intensive, resource-demanding, and
precise lesion annotation

requiring  expert

supervision.

Clinical Advantages of YOLOvS

In contrast to CNN models that determine
fracture presence or absence without lesion
localization, the YOLOvVS8 architecture offers sub-
stantial clinical advantages through simultaneous
object detection and classification capabilities. This
YOLOVS
automated diagnostic

functionality renders exceptionally

suitable for assistance

systems, particularly in resource-constrained
environments and for supporting junior medical
trainees.

Additionally, YOLOvVS8

superior performance with suboptimal image

demonstrated

quality or partially obscured lesions, reflecting real-

world clinical scenarios involving variable
projection angles, image sharpness variations, and

metallic implant interference.

Potential Causes of AI Misclassification

In this study, heatmap-based visualization,
such as Grad-CAM, was not incorporated, and
therefore the exact sites where the Al failed to
detect be
Nevertheless, previous studies have provided

fractures could not localized.
insights into common sources of error. Cheng et
al.® demonstrated that Al often misinterprets
subtle trabecular changes in heatmaps, while
Krogue et al.® reported particularly low sensitivity
for nondisplaced femoral neck fractures, consistent

with our results, in which femoral neck fractures

had lower sensitivity than those of intertrochanteric
fractures. Similarly, Pinto et al.® highlighted that
subtle or occult fractures on plain radiographs are
challenging even for radiologists and thus remain a
limitation for Al Beyaz et al.”? showed that using
ensemble CNN models and multicenter data
improved generalizability and reduced false
positives, supporting the notion that broader and
more diverse datasets may mitigate some of the
failure modes observed in our model. While our
study excluded postoperative images with metal
implants to avoid confounding artifacts, prior
studies (Shi et al.®) emphasized that variability in
radiographic exposure and image quality remains a
major source of diagnostic error. Collectively, these
comparisons suggest that misclassification in our
model likely arose from subtle nondisplaced
fractures, limited dataset size for certain subgroups,

and the inherent limitations of plain radiography.

Amnnotation Bias

Previous studies have highlighted that data
labeling can be prone to errors, particularly in
subtle or borderline fractures that may be
interpreted as “normal.” Pinto et al.® reported that
missed diagnoses on plain radiographs in
emergency settings are relatively common and can
directly translate into annotation bias when
training Al models. Similarly, Lindsey et al.®
demonstrated that although deep neural networks
improve fracture detection by clinicians, subtle
To

minimize this issue, all images in our study were

fractures remain a significant challenge.
reviewed and grouped by the treating orthopedic
surgeon before training.

Overfitting and Underfitting

The risks of overfitting and underfitting
have been well documented in prior studies.
Krogue et al.® noted that models trained on single-
center datasets may overfit specific image
characteristics and perform poorly in external

settings. Cheng et al.©® emphasized the importance
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of dataset size and diversity and noted that
insufficient variability can lead to underfitting and
reduced generalizability. By contrast, Beyaz et al.”)
demonstrated that training on multicenter datasets
with ensemble models mitigated overfitting and
Our
attempted to address these limitations through

improved diagnostic robustness. study
careful annotation review, but the relatively small
sample size of femoral neck fractures may have
low

contributed to underrepresentation and

sensitivity in this subgroup.

Potential Implementation Barriers and Solutions
One of the major barriers to applying Al
models in real-world clinical practice is concern
regarding diagnostic accuracy and reliability. For
this reason, we consider the proposed model to be
the most valuable decision-support tool to assist
clinicians, particularly junior doctors, in confirming
or validating their initial interpretation rather than
fully replacing human judgment. This approach
can help improve confidence in diagnosis while
minimizing the risk of overreliance on Al
Regarding cost and feasibility, because the
YOLOvVS8 model has already been developed and
trained, it can be deployed on the intranets of
healthcare facilities without requiring expensive
infrastructure. Moreover, the model can also be
implemented through free hosting platforms, such
as Hugging Face, which allows the tool to be
accessed by multiple centers at no additional cost.
This flexibility
particularly in resource-limited hospitals.

supports practical adoption,

Limitations Regarding the Single-Center Design
and Exclusion Criteria

A key limitation of this study is that all data
were collected from a single hospital, which may
reduce the generalizability of the results to other
populations or imaging environments. However,
the choice of YOLOVS as the core architecture
provides advantages because it is designed to
handle images of varying quality, including lower-

resolution or partially obscured images, making it
more adaptable to real-world radiographs from
different should
expand to include multicenter datasets to validate

institutions. Future research
the external applicability of the model.
Another important limitation of this study
is the exclusion of patients who had osteoporosis
combined with other hip pathologies, such as septic
arthritis of the hip, avascular necrosis of the femoral
head, and advanced hip osteoarthritis. These
conditions were excluded because they often cause
significant anatomical distortion or cortical bone
irregularity, making it difficult for the model to
accurately learn and classify normal versus
fractured anatomy during the initial training phase.
Nevertheless, the ability to recognize fractures in
atypical or deformed hip anatomy represents an
opportunity

improvement.

important for future model

Clinical Implementation Potential

Based on the present findings, the YOLOv8
model demonstrates strong potential for real-world
clinical integration. With sensitivity, specificity,
and F1 scores consistently above 90%, the model
provided sufficient diagnostic reliability for
application as a supportive screening tool. Its real-
time processing speed allows for rapid decision-
making in emergency departments, which is crucial
for minimizing delays in hip fracture management.
Importantly, the model can serve as a decision-
support mechanism for junior doctors in settings
with thereby

enhancing diagnostic safety. Furthermore, because

limited radiological coverage,
the system can be deployed on hospital intranets or

secure web platforms without extensive
infrastructure investment, it is highly scalable and
accessible, even in resource-limited hospitals. This
scalability extends to telemedicine networks, where
peripheral clinics may benefit from Al-assisted
preliminary interpretations before confirmation by
orthopedic specialists. These strengths suggest that

YOLOVS is not only technically robust but also
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clinically feasible and cost-effective, making it a
promising candidate for widespread implemen-
tation in diverse healthcare settings.

Recommendations for Future Development

Based on the sensitivity and specificity
analyses, opportunities for improvement include
femoral neck fracture dataset augmentation and
advanced data augmentation techniques during
model training. Potential enhancements include
controlled brightness and sharpness adjustments,
minor rotational modifications, and controlled
noise introduction to facilitate diverse image
learning and reduce overfitting, which are
particularly relevant for morphologically complex

femoral neck fractures.

CONCLUSIONS

The YOLOv8-based model demonstrated
significant clinical potential, with performance
metrics closely aligned with established research
findings from Krogue®, Cheng®), and Lee®), while
approaching the results reported by Beyaz et al.?.
The hip fracture diagnostic efficiency of the model
consistently exceeded 90%, indicating its robust
capability for real-world clinical applications.

Importantly, although the model showed
high overall sensitivity and specificity, certain
limitations were noted in failure cases. For

example, subtle or nondisplaced fractures,
borderline cases between normal and fractured,
and images with lower quality or anatomical
variations occasionally led to misclassifications.
These findings are consistent with challenges
reported in previous studies®-9).

Such failure cases highlight the necessity
for larger and more diverse training datasets,
improved annotation consistency, and possible
integration with multiview or multimodality
imaging to enhance detection performance.
Additionally, interpretability tools, such as heat

maps or attention maps, could be applied in future

work to precisely identify where Al may misread
fracture signals.

In summary, this study established
YOLOVS as a highly appropriate architecture for
hip fracture diagnostic assistance from radiograp-
hic images, supported by superior performance
metrics, processing velocity, localization capabili-
ties, and alignment with practical healthcare delive-
ry requirements. Nevertheless, continued refine-
ment is essential to minimize missed diagnoses and
strengthen confidence in its clinical adoption.
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APPENDIX

Source code for training the YOLOVS
model:
https://drive.google.com/file/d/1sb4gwajjeMHILF1
KEf66YX|jjSuP7W3eWK/view?usp=sharing
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